Incorporating World Information into the IMM
Algorithm via State-Dependent Value Assignment

Rastin Rastgoufard Vesselin P. Jilkov

X. Rong Li

Department of Electrical Engineering
University of New Orleans
New Orleans, LA 70148, U.S.A.
Email: {rrastgou, vjilkov, xli} @uno.edu

Abstract—We propose two methods of incorporating world
information as modifications to the Interacting Multiple Model
(IMM) algorithm via state-dependent value assignment. The
value of a state is a measure of its worth, so, for example,
waypoints have high value and regions inside obstacles have small
value. The two methods involve modifying the model probabilities
in the update step and modifying the transition probability
matrix in the mixing step based on the assigned values of target
states. The state-dependent value assignment modifications to the
IMM algorithm are simulated and compared with the standard
IMM algorithm over a large number of game player-controlled
trajectories for obstacle avoidance, as ground truth, and are
shown experimentally to perform better than the standard IMM
algorithm in both target’s current state estimation and next state
prediction. The proposed modifications can be used for improved
trajectory estimation or prediction in real-life applications such
as, e.g., Air Traffic Control, ground target tracking and robotics,
where additional (world) information is available.

Index Terms—IMM, state-dependent transition probabilities,
constraints, penalty function, waypoints, obstacles

I. INTRODUCTION

Multiple model (MM) estimation is the state-of-the-art
approach to maneuvering target tracking [1], [2] wherein
maneuvering target tracking problems are typically modeled
through “hybrid systems” [3] in which the target kinematic
state is continuous, but the target mode of motion at any
time is described by a finite number of kinematic models.
MM estimation can be categorized into three generations—
autonomous, cooperating and variable-structure, the first two
of which use a fixed-structure of a model set. A very popular
MM algorithm is the (fixed structure) Interacting Multiple
Model (IMM) algorithm [4], [5] which runs several Kalman
filters in parallel and merges their results. The IMM algorithm
is widely-used because it is cost-effective, meaning that it
performs relatively well and is computationally inexpensive.

In many real-world applications the modes of motion of a
target depend on its state, and additional (world) information
on the target behavior, as a function of its state, is available.
For example, almost never does a civilian aircraft approach a
runway for landing or a car on a highway move in an arbitrary

This research was supported in part by NASA/LEQSF(2013-15)-Phase3-06
through grant NNX13AD29A.

Rastin is currently a Ph.D. student in the Department of Electrical
Engineering at the University of New Orleans.

way. The airplane must respect the rights of way of all other
airplanes and follow instructions of the air traffic controller,
and the car is likely to maintain its lane on the road if it does
not wish to cause an accident. Often the airplane or car is the
target to be tracked, and in both cases, information about the
world around the target affects its motion. Furthermore, the
impact that the world has on the target depends not only on
the world but also on the state of the target: the target responds
to the current conditions of the world around it. A way of
improving the prediction/tracking performance is to incorporate
as much as possible any available world information (which
can depend on the target’s state) into the tracking algorithm.

A simple illustration of using additional information within
the fixed structure IMM algorithm is given in [6] in which a ve-
hicle is moving along a highway. Two conditions are of interest
— maintaining a lane or changing lanes. There is a motion model
and associated “directional” process noise that corresponds to
maintaining a lane, and there is a different motion model
with a different type of process noise associated with the lane
change maneuver. [6] shows that the IMM algorithm tracks
the vehicle well under both conditions and quickly determines
when lane changes happen. The target behavior is captured by
just two models. Most practical problems, however, require
many more modes of operation to characterize a target’s range
of motion. The IMM algorithm’s performance suffers when
there are too many motion models that overlap and compete [7].
The variable-structure multiple model (VSMM) approach and
algorithms [2], [7] can significantly outperform the traditional
fixed-structure IMM algorithm, (e.g, [7]-[11]). Moreover, those
VSMM algorithms inherently posses the capability of capturing
world information because of the fact that the set of models
can be adapted based on the target’s current state. For example,
[7] describes a problem in which the acceleration of the target
cannot change rapidly. An overarching set of models is designed
to cover all of the possible target accelerations, but at any time
the VSMM algorithm uses the set of accelerations that are “near’
the target’s current acceleration. As the target’s acceleration
changes, the VSMM algorithm chooses different sets of models
accordingly.

VSMM algorithms with model selection or switching rules
that are based not only on the target’s state but also on the
properties of the world around the target have been already
applied to real-word problems with great success. For example,

i

[12] and [13] limit the available modes of operation based on

the presence of roads and whether or not the target is on a road.

[12] describes a general ground target tracking problem where
a target may be navigating in an unconstrained environment
(off-road); it may be near a road, or it may be constrained to
be on a piecewise linear road. Furthermore, roads may have
junctions, where the target can choose different branches. Each
condition, including motion at a junction, is captured by a
different set of models, and there is a very intricate method
of selecting which models are applicable. [13] expands the
on-road condition and describes how to incorporate the actual
curvature of road segments as constraints.

In the VSMM methods, the state-dependent information is
captured by the strategic selection and omission of models.
The work presented in this paper is focused on embedding
state-dependent and world information into the model transition
probabilities or the model probabilities of the IMM algorithm
directly. Similar approaches within the fixed structure IMM
algorithm have been reported in the literature, e.g., [14]-[16],
where the model transition probabilities or model likelihoods
are modified based on the target’s state. [15], [16] use a
transition probability matrix (TPM) that depends on the
proximity to a waypoint through guard conditions. An example
is given in [15] where an airplane should turn toward a new
destination when it arrives at a waypoint. There are two guard
conditions to model this desired behavior. The first is to
switch from constant velocity to constant turn when the plane’s
position is near the waypoint. The second is to switch away
from constant turn back to constant velocity when the plane’s
heading is near a specific angle. [14] considers a problem
in which a target can choose to stop randomly as an evasive
maneuver. The authors make the argument that real world
targets cannot instantaneously cease their motion, and thus the
probability that the target will stop is small when its speed
is large. The TPM governing the switching of motion models
depends on the speed of the target. The methods proposed in
this paper, along with some of the aforementioned methods,
can complement the VSMM methods and would operate after
the set of models is selected.

Briefly, the main idea of our approach is as follows. We
consider two locations in the IMM algorithm that allow world
information to be incorporated. The first is in the update step of
the model probabilities (MPs) that uses the likelihoods of each
model. The second is in the TPM used to predict the model
probabilities for re-initialization of the conditional filters. Just
before the end of one cycle of the IMM algorithm there is one
estimated state for each of the models in the algorithm. Each of
these states is assigned a value, based on the world information,
and the values then modify the weights of their respective
models in the final update step of the algorithm. The details
of this process are given in Sec. IIL.B (State-Dependent Model
Probabilities). Furthermore, the estimated states will interact
in the mixing step to obtain the next cycle’s re-initialization.
Before that happens, each estimated state is propagated by all
motion models to determine “what-if” predicted states. The
number of these predicted states is equal to the number of
elements in the TPM. The assigned values of these predicted
states characterize the values of the transitions, and thus they

are used to modify the TPM, as given in Sec. III.C (State-
Dependent Transition Probabilities).

II. OUTLINE OF THE IMM ALGORITHM

We give here a brief outline of the IMM algorithm as far as
it is needed for the remainder of the paper.

The IMM algorithm runs several Kalman filters in parallel.
The individual filters are re-initialized at each time step (cycle)
using a probabilistic mixture of the results from the previous
step using the predicted model probabilities and the TPM, and
after each filter is run the model probabilities are updated
through the model likelihoods. For output, an overall state
estimate is computed as a mixture of the individual filters’
estimates.

More specifically, consider the following Markov jump
linear systems where the ¢th model of the finite MM set

M = {m®, ... m®)} obeys the following equations:
e = Fzy, + GPwl) (1)
2 = H zy + 0")

o,

where E[w,(;)] = ﬂ)l(;), cov(w,(;)) = ,(;), E[v,(;)] =
cov(v,(;)) = R,(J). Superscript (i) denotes quantities pertinent
to model m® in M, and the jumps of the system mode are
assumed to have transition probabilities

P{mi) Imy"} £ 3)
where mg’) denotes the event that model m(?) matches the
system mode in effect at time k. A complete recursion of the
IMM algorithm with Kalman filters as its elemental filters
is summarized in Table I [1] for the Markov jump linear
system (1)—(3) with white Gaussian independent process and
measurement noises.

III. STATE-DEPENDENT VALUE ASSIGNMENT

To every possible state that the target can take we assign a
penalty or benefit value depending on the world information.
For example, we could define a simple mapping such that every
location inside of an obstacle is assigned a zero and every other
location is assigned a one. The state-to-value mapping is used
to modify the update of mode probability (see Table I) and the
TPM II = (mj)%:l in (3) that is used for model-conditioned
re-initialization (see Table I).

A. A State’s Value

To explain the idea, let us consider a scenario of obstacle
avoidance, as illustrated in Fig. 1. Such scenarios are typical
in, e.g., aircraft flight re-routing in order to avoid regions of
bad weather and in mobile robotics to avoid obstacles.

The state-to-value mapping described below is only one of
many possible mappings for the specific type of obstacles in
Fig.1. Every problem may have many possible mappings, and
the design of the state-to-value mapping is something to be
carefully considered by the designer for any specific application.
In Fig. 1, there are two factors that give hints towards the design.
First, the obstacles are assumed, for simplicity, to be circles

TABLE I: One cycle of the IMM estimator [1].

1. Model-conditioned reinitialization (for ¢ = 1,2, ...

, M):

Predicted mode probability: u(i) 2 P{m](j)|zk_1} =3, Wjiyéj)l

k|k—1
jli A
He—1 =
7®
Te_1)k—1

Mixing weight:

Mixing estimate:
Mixing covariance:

= E[Ik—l |m}(:)7 z

P{méjll\mgcl),zk_l} =T Zp‘k 1//‘k|k 1

k—17 _ 409 gl
] = Te—1|k—1Hk—1

Pk = Sl + @ -3)@ Eﬁllk =8) e
2. Model-conditioned filtering (for ¢ = 1,2,..., M):

Predicted state: ;%,(:‘)k 1= FIEZ_)laE](j) k-1 + G’;:llwl(jll

Predicted covariance: P,gl) = F(l) P(l)1|k 1(F(i—)1)/ G(l) Q(l) G;fll)/

Measurement residual: él(jg =z — Hp, (D (I)k 1 ’]ii)

Residual covariance: S< H(Z)Pli‘;C 1(H]i >)’ + R;@”

Filter gain: Kfj) =P (Hy(s0)

Updated state: A,(:‘)k = i;i)k L+ Km <l)

Updated covariance: PISTI)C Pk(lll)C - K ,(j)S ,(;)(K ,(Ci))’
3. Mode probability update (for ¢ = 1,2,..., M):

Model likelihood: L) 2 p[zD D) ok—1) UM pr(5(0). g g0

(@) _ M1 i

Mode probability: Hy,

4. Estimate fusion:
Overall estimate:

Overall covariance: Py =

=2:lP

B =2 A,(Jkﬂk

25 “Ef\zﬁngf)

©)

\k + (xlc\k - xk|k)($k\k - zk|k)]N

with known radii. Second, the moving target is “allowed” to be
inside an obstacle, but such a maneuver is discouraged. These
two factors can be handled by a sigmoid function, defined
below in (4).

Assume there are N circular obstacles, each with radius
r; and center (x;,y;), where ¢ € {1,..., N}. Then, consider
only the position (x,y) of a state x. The distance between the
position of the state x and the :th obstacle center is

di(z) =/ (x —x:)2 + (y — v4)?

If d;(z) > r;, then the position is outside the ith obstacle.

Define a function s(x, 1) as

1
1+ exp(—p8(di(x) — 1))

It has a sigmoidal shape. A state with position that is outside

s(x, 1) =

“4)

the ith obstacle has d; > r; and s(z,4) is approximately one.

A state that is inside the ith obstacle has d; < r; and s(x,1)
is near zero. The parameter 5 controls the steepness of the
transition between the outside and the inside regions. One
minor but nice property of this sigmoidal shape is that the

gradient always points away from the center of an obstacle.

Fig. 2 shows the values of all states (x,y) with respect to an
obstacle centered at (x;,y;) = (0,0) with radius r; = 2.

The function s(x,) is the value of the state = with respect
to a single obstacle ¢. In order to find an overall value of
the state = with respect to the world, we define s(z) as the

minimum of all N functions s(x,1):

s(z) = min s(z,1))

1<i<N

B. State-Dependent Model Probabilities

The function s(x) gives the value of every state x. This
information can be incorporated into the model probabilities
in the update step (see Table I) under the assumption that an
intelligent target will want to maneuver toward high-valued
states.

(4)

Specifically, each model probability p,.~ is updated by

o _ Moo lds

My = . —
ST

(6)

where s(D= s(xgl)k) and :%l(;‘)k is the estimate from the ith

conditional filter. In other words the likelihood of model m®
is changed from L to L

C. State-Dependent Transition Probabilities

The states’ value information can be embedded into the
TPM II = (wij)%zl in (3) that is used for model-conditioned
re-initialization (see Table I) under the assumption that an
intelligent target will want to maneuver toward high-valued
states.

1 . 1 1 1 1

-10 -5 0 5 10

-10 -5 0 5 10

Fig. 1: Sample ground truth trajectories. The black solid line shows the continuous time trajectory, the green circles show error
free samples (taken once every T = 0.35 seconds) and the heavy blue circle shows the starting location of the trajectory. The

red dotted circles are obstacles that the target should avoid.

Before the recursive cycle (k—1 — k) of the IMM algorithm
(Table I), the TPM II is modified as follows:

(i5)

Tij Sk k—
Tijh = o — @
Zj TijSk|k—1
where s{%) = 5(33(”)) and
klk—1 = S\ Tgp—1
B = B + 6 ®)

(i5)

That is, the transition probability 7;; is modified to m;; Splk—1-

Then the recursive cycle (k—1 — k) of the IMM algorithm
is completed as given in Table I with the modified II; =
(mijr)i%—, instead of II.

Clearly, both modifications (6) and (7) make good sense.

IV. EXPERIMENT AND RESULTS

Fig. 1 shows four examples of ground truth trajectories.

Samples come from the position part of the ground truth every

T = 0.35 seconds, and these samples are used as the basis of
the tracking experiment. The purpose of the experiment is to
compare the performance of the standard IMM algorithm with
the IMM algorithm with state-dependent modifications.

A. Experimental Design

The first step for setting up the experiment is to design
the IMM algorithm’s model set. This model set should
capture the possible maneuvers that the target can take while
simultaneously being as simple as possible. In order to simplify
the design, we chose sections of ground truth in which the
speed of the target is constant, thus avoiding the need to model
linear accelerations. (In all cases shown in Fig. 1, the target is
at full throttle the entire time.)

We track the position and the velocity of the target. The state
vector is ¢ = [x,y, X,y]" where x and y represent coordinates.
The model set that we chose consists of five constant turn
models with different turn rates. Two left-turn models have
w1 = 1.42 x 27 rad/s and wy = 0.71 X 27 rad/s. Two right-turn

Value Function Using = 3.00 and 6.00 for a Single Obstacle

i i f.immmrw 'w%,:'z‘;'?;

02 ‘ \ ‘ '

|)\ ‘ ' |
\\\\’ ’ Q("“) ‘”,lm 'u;“l M i

Value of (x,y)

/‘

——— B =3.00
———PB=6.00

Fig. 2: The function s(z, %), given by (4), for an obstacle with
r = 2 and two values of 8. The region outside the obstacle
has a neutral value of 1, but the region inside the obstacle is
penalized to have value close to zero.

models have wy = —ws and ws = —w;. A final model has
ws = 0, which corresponds to going straight. The dynamics
matrix of a constant turn model [17] is as follows.

10 sin(wT) cos(wT) — 1
w w
1 —cos(wT) sin(wT)
Aw)= V1 T o ©
0 0 cos(wT) —sin(wT)
0 0 sin(wT) cos(wT)

Fig. 3 shows the possible combinations of the five models
after two time steps. The process noise is omitted in the figure
just for clarity of illustration. The green circles represent the
end position, and each black line shows the trajectory that the
target would have taken to get to an endpoint. Even though the

mode sequences [wa,ws] and w1, ws] have the same endpoint,

the resulting orientations are different.

The second step for setting up the experiment is to design
various filters. We implemented and tested four versions of the
IMM algorithm, all of which use the same model set. The first

two versions have a constant TPM with large diagonal elements.

The first algorithm is the standard IMM algorithm with no
state-dependent features. This is called “Normal.” The second
algorithm is the IMM algorithm with the world information
embedded into the model probabilities, as described in Section
I1.B (State-Dependent Model Probabilities). This is called “SD
MPs.”

The third and fourth versions have a new TPM at every time
step. The third algorithm is the IMM algorithm with the world
information embedded into the TPM, as described in Section
III.C (State-Dependent Transition Probabilities). This is called
“SD TPM.” The fourth variation is the IMM algorithm with
world information embedded into both the model probabilities
and the TPM. This is called “SD Both.”

All three of the state-dependent variations use the value
function s(z) given by (5). The function s(z) knows the
locations and sizes of the obstacles of the world shown in
Fig. 1.

The final step for the design of the experiment is to prepare
true trajectory samples with corresponding noisy measurements.
Fig. 1 shows four example ground truth trajectories. Each green
circle represents the truth at a particular time step. Those serve
as reference samples and are corrupted by noise of a varying
degree to obtain the measurements.

The measurement model used in the IMM algorithms
matches the mechanism by which the measurements are
created. It uses position-only measurements with additive white
Gaussian noise vy, i.e.,

(1 0 0 O . 2 9
H_ (0 1 0 0)7 URNN(O7R)7 R_dzag{(jz?o.z}
The experiment runs all of the filters for a fixed value of o2 and
then repeats with a different o2 to see the effect of different
noise levels.

B. Results

All four versions of the IMM algorithm estimate and predict
the motion of the target. Fig. 4 shows the algorithms’ estimated
and predicted states over two consecutive time steps in one
sample run. There are several ground truth trajectories, some
of which are shown in Fig. 1.

On each run (trial), the estimation and prediction errors
Ty = x — ¥y are computed for | = k, k — 1, respectively,
and then scalar time-averaged estimation and prediction errors,

Possible Two-Step Trajectories When Using 5 Modes of Motion
181

15}
_ 14t
> 13

11

9 1 1 1
5 10 15

X (m)
Fig. 3: Possible sequences over two time steps. The initial state
s [x,y,%y] = [10,10,0,10])". Each time step is T" = 0.35
seconds long. The green circles indicate a possible position
(x,y) at each time step.

52.93/74.15 sec, multiplier = 0.42 x

53.31/74.15 sec, multiplier = 0.42 x

1 - .
At Normal Normal
—— SDTPM —— SD TPM
; ; ; —— SD MPs —— SD MPs
. —— SD Both -1, —— SD Both
S8 : : .
3t
5}
5+t
7t . X
. 7t .
9t X .
-11 -9 -7 -5 -3 -13 -11 -9 -7 -5

State Count: 1397, Meas Count: 151

State Count: 1408, Meas Count: 152

Fig. 4: Close-ups of two consecutive time steps in one run. The heavy blue circle at the center of each frame is the current
location of the target, and the heavy blue dot shows its orientation. The thin black line is its actual continuous time trajectory.
The two red circles indicate the two most recent measurements. The colored crosses show each algorithm’s estimated position
output. The four colored squares show each of the algorithm’s one-step predicted position. The dotted arc of a circle is an
obstacle that the target should avoid. Notice that the “Normal” IMM algorithm tries to continue the motion while the three
state-dependent variations predict that the target will maneuver to avoid the obstacle.

respectively, are computed as follows:

1 N

ce = Y (Hige) (HEyy) (10)
k=1
1 N

ep = NZ\/(kalkfl)'(ij\kfl) an
k=1

There is one value of e. per trial for each of the four
algorithms in the experiment, and there is one value of e, for
the measurements themselves for each trial. Similarly, there is
one value of e, per trial for each of the four algorithms. In
order to assess the four algorithms, each trial is repeated 300
times and the errors are averaged over all trials to obtain e,
and e,. Table II shows the average errors for three different
levels of 2. In Table II, the measurement error is in bold face
because it is the baseline reference. The other bolded values
correspond to the filter that had the lowest error, on average,
for a specific level of o2.

C. Discussion

Table II shows the results of the experiment for a typical
ground truth case. There are twelve similar ground truth cases,
each of which contains cases for seven different measurement
noise levels. Thus, the experiment contains a total of eighty-
four parameter combinations. All eighty four combinations are
documented in detail in [18]. One purpose of this section is
to try to identify patterns in the results, and to that end two
major questions need to be addressed.

TABLE 1II: Three sets of estimation and prediction errors
averaged over 300 runs for varying amounts of noise 2.

Estimation Prediction
Measurements 0.08873 -
a) o'g = 0.005 Normal 0.08827 1.57677
SD TPM 0.08811 1.43514
SD MPs 0.08826 1.40860
SD Both 0.08811 1.41925
Estimation Prediction
Measurements 0.27937 -
b) UZ =0.05 Normal 0.27229 1.78459
SD TPM 0.27028 1.62484
SD MPs 0.27196 1.61392
SD Both 0.27012 1.59280
Estimation Prediction
Measurements 0.88759 -
¢) o'z =05 Normal 0.85571 2.51311
SD TPM 0.83711 2.39872
SD MPs 0.84918 2.34708
SD Both 0.83372 2.34748

1) Does knowledge of the environment actually make a
difference in tracking performance?

2) Is there a difference between implementing the world
information in the model probabilities as opposed to in
the TMP?

It is seen from Table II that if the measurement noise is
very small, the estimation improvement by the SD versions
is not significant, because the normal algorithm is already
very accurate (due to almost perfect measurements), but
as the measurement noise increases the estimation accuracy
improvement of the SD algorithms also increases considerably.
With respect to the prediction accuracy, the SD algorithms are
clearly better.

Table III provides some counts that help make a more
thorough comparison.

TABLE III: Performance summaries over a total of 84 cases.
The entry in the ¢th row and jth column shows how many
times algorithm ¢ was better than algorithm j.

- =2 & £
:E S
z 8 & 8
Normal 4 2 3
SD TPM | 73 70 4
SD MPs | 52 7 5

SD Both | 74 48 72

Estimation

- = &£ £

:E 5 3

z 8 & 8
Normal 1 0 1
SD TPM | 76 21 10
SD MPs | 77 56 41

SD Both | 76 67 36

Prediction

1) State-Dependent Performance: The experiment contains
four versions of the IMM algorithm. In addition to calling
them “Normal,” “SD TPM,” “SD MPs,” and “SD Both,” we
can refer to them as the first, second, third, or fourth algorithm,
respectively. This is the order in which the algorithms were
implemented as well as the order in which the results are
displayed. Table III counts how many times algorithm ¢ was
better than algorithm j over the eighty-four cases.

The Estimation columns of Table II show the values of e, ;,
and the Prediction columns show the values of ¢, ; for a 40-
second-duration trajectory. (The additional subscript refers to
the choice of algorithm.) For every pair i, 5 € {1,2,3,4}, add
one to the ¢, jth entry of the Estimation portion of Table III
if €.; < €. The process is repeated again using €, ; for
Prediction. The elements on the diagonal show the total number
of cases summarized in Table III.

Table III shows that the three state-dependent variations
of the IMM algorithm very frequently perform better, on
average, than the “Normal” algorithm both for estimation and
for prediction. This can be seen in two ways. The entries
in the first column that correspond to the state-dependent
algorithms are very high, with the exception of “SD MPs” in
the Estimation case, meaning that the state-dependent variations
frequently perform better than the “Normal” version. A similar
conclusion comes from the first row of each of the two tables;
the “Normal” version is almost never better than the state-
dependent versions. In Estimation, “SD MPs” is better than

“Normal” 52 times, “Normal” is better than “SD MPs” only 2
times, and the remaining 30 times the two were equal (within
five decimal places). Seven of the equivalent performances
come from a ground truth in which there are no obstacles.

It is important to note that Table III does not give an
indication of how much better the state-dependent algorithms
performed. It merely counts how many times the state-
dependent algorithms performed better by any amount.

2) State-Dependent Comparison: According to Table III,
there are differences between using “SD MPs,” “SD TPM,”
and “SD Both.” The relative differences between the variations
depend as much on the choice of the state-to-value mapping
as they do on the methods of incorporating that information.

Table III shows that “SD TPM” performs better than “SD
MPs” a majority of the time in estimation. Further, it shows that
“SD Both” is at least as good as, if not better than, “SD TPM”
in the majority of cases. Conversely, it shows that “SD MPs”
often predicts better than “SD TPM.” It also shows that “SD
MPs” is roughly equivalent in prediction performance to “SD
Both.” The combination algorithm “SD Both” can take both
the good parts and the bad parts of the individual variations
“SD TPM” and “SD MPs,” and thus the challenge becomes to
differentiate between “SD TPM” and “SD MPs.”

It seems that “SD TPM” is not as good as “SD MPs” for
prediction, but it is better for estimation. Generally, the IMM
algorithm at the (k + 1)th time step has the ability to lessen
the strength of the kth measurement because of the mixing
step. The “SD TPM” algorithm has even more of that power
because of the fact that the TPM can be very heavily modified,
as in (7), before the mixing step takes place. We believe this
causes the predictions of the “SD TPM” algorithm to be more
wild than the predictions of the “SD MPs” algorithm. Even
though the predictions of “SD TPM” are wild, they appear to
be good mixing candidates once a new measurement arrives
to tame them.

V. SUMMARY AND CONCLUSIONS

Three state-dependent variations of the IMM algorithm have
been proposed and studied. State-dependent model probabilities,
“SD MPs,” embeds the world information into the mixing
step of the IMM algorithm. State-dependent TPM, “SD TPM,”
incorporates the world information into the TPM before the
mixing step of the IMM algorithm. Their combination, “SD
Both,” modifies both the model probabilities and the TPM.

Based on the set of ground truth trajectories and the
simulation results, “SD TPM” seems to perform better than
“SD MPs” for estimation but worse for prediction. The
combination, “SD Both,” often performs at least as well as the
other two. All three of the variations always outperform the
“Normal” algorithm. The estimation performance improvement
is not always significant, but increases considerably as the
measurement noise increases. The prediction performance is
always clearly better than that of the “Normal” version.

The specific value function proposed in Section IILLA (A
State’s Value) is relatively simple and not quite matched to the
ground truth generator’s rules. A better value function certainly
would improve the tracking performance of the state-dependent

IMM algorithms. Regardless, the simple value function is
enough to improve the performances of the state-dependent
algorithms when compared to the standard IMM algorithm.

The value function must be tailored to a specific problem,
but the method of incorporating the world information into the
IMM algorithm is generally applicable. Specific performance
details depend on both the problem and the choice of value
function.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

REFERENCES

X. R. Li and V. P. Jilkov, “Survey of Maneuvering Target Tracking. Part
V: Multiple-Model Methods,” IEEE Trans. Aerospace and Electronic
Systems, vol. 41, pp. 1255-1321, Oct. 2005.

X. R. Li, “Engineer’s Guide to Variable-Structure Multiple-Model Esti-
mation for Tracking,” in Multitarget-Multisensor Tracking: Applications
and Advances (Y. Bar-Shalom and W. D. Blair, eds.), vol. III, ch. 10,
pp. 499-567, Boston, MA: Artech House, 2000.

X. R. Li, “Hybrid Estimation Techniques,” in Control and Dynamic
Systems: Advances in Theory and Applications (C. T. Leondes, ed.),
vol. 76, pp. 213-287, New York: Academic Press, 1996.

H. A. P. Blom, “An Efficient Filter for Abruptly Changing Systems,” in
Proc. 23rd IEEE Conf. Decision and Control, (Las Vegas, NV), Dec.
1984.

H. A. P. Blom and Y. Bar-Shalom, “The Interacting Multiple Model
Algorithm for Systems with Markovian Switching Coefficients,” IEEE
Trans. Automatic Control, vol. AC-33, pp. 780-783, Aug. 1988.

R. Toledo-Moreo and M. A. Zamora-Izquierdo, “IMM-Based Lane-
Change Prediction in Highways with Low-Cost GPS/INS,” IEEE
Transactions on Intelligent Transportation Systems, vol. 10, no. 1, pp. 180—
185, 2009.

X. R. Li and Y. Bar-Shalom, “Multiple-Model Estimation with Variable
Structure,” Automatic Control, IEEE Transactions on, vol. 41, no. 4,
pp. 478-493, 1996.

X.R. Li, Y. Zhang, and X. Zhi, “Multiple-Model Estimation with Variable

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

Structure: Model-Group Switching Algorithm,” in Proc. 36th IEEE
Conference on Decision and Control,, vol. 4, pp. 3114-3119, 1997.

X. R. Li, X. Zhi, and Y. Zhang, “Multiple-Model Estimation with
Variable Structure. III. Model-Group Switching Algorithm,” Aerospace
and Electronic Systems, IEEE Transactions on, vol. 35, no. 1, pp. 225—
241, 1999.

X. R. Li, “Multiple-Model Estimation with Variable Structure. II. Model-
Set Adaptation,” Automatic Control, IEEE Transactions on, vol. 45,
no. 11, pp. 2047-2060, 2000.

X. Wang, S. Challa, R. Evans, and X. R. Li, “Minimal Submodel-Set
Algorithm for Maneuvering Target Tracking,” Aerospace and Electronic
Systems, IEEE Transactions on, vol. 39, no. 4, pp. 1218-1231, 2003.
T. Kirubarajan, Y. Bar-Shalom, K. R. Pattipati, and 1. Kadar, “Ground
Target Tracking with Variable Structure IMM Estimator,” Aerospace and
Electronic Systems, IEEE Transactions on, vol. 36, no. 1, pp. 2646,
2000.

M. Zhang, S. Knedlik, and O. Loffeld, “An Adaptive Road-Constrained
IMM Estimator for Ground Target Tracking in GSM Networks,” in
Information Fusion, 2008 11th International Conference on, pp. 1-8,
2008.

S. Zhang and Y. Bar-Shalom, “Tracking Move-Stop-Move Targets
with State-Dependent Mode Transition Probabilities,” Aerospace and
Electronic Systems, IEEE Transactions on, vol. 47, no. 3, pp. 2037-2054,
2011.

I. Hwang and C. E. Seah, “An Estimation Algorithm for Stochastic Linear
Hybrid Systems with Continuous-State-Dependent Mode Transitions,”
in Decision and Control, 2006 45th IEEE Conference on, pp. 131-136,
2006.

C. E. Seah and I. Hwang, “State Estimation for Stochastic Linear
Hybrid Systems with Continuous-State-Dependent Transitions: An IMM
Approach,” Aerospace and Electronic Systems, IEEE Transactions on,
vol. 45, no. 1, pp. 376-392, 2009.

X. R. Li and Y. Bar-Shalom, “Design of an Interacting Multiple Model
Algorithm for Air Traffic Control Tracking,” Control Systems Technology,
IEEE Transactions on, vol. 1, no. 3, pp. 186194, 1993.

R. Rastgoufard, “The Interacting Multiple Models Algorithm with State-
Dependent Value Assignment,” Master’s thesis, University of New
Orleans, 2012.

